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Type 2 diabetes mellitus is a heterogeneous inherited disorder characterized by chronic hyperglycemia resulting
from pancreatic b-cell dysfunction and insulin resistance. Although the pathogenic mechanisms are not fully un-
derstood, manifestation of the disease most likely requires interaction between both environmental and genetic
factors. In the search for such susceptibility genes, we have performed a genomewide scan in 58 multiplex families
(comprising 440 individuals, 229 of whom were affected) from the Botnia region in Finland. Initially, linkage
between chromosome 12q24 and impaired insulin secretion had been reported, by Mahtani et al., in a subsample
of 26 families. In the present study, we extend the initial genomewide scan to include 32 additional families, update
the affectation status, and fine map regions of interest, and we try to replicate the initial stratification analysis. In
our analysis of all 58 families, we identified suggestive linkage to one region, chromosome 9p13-q21 (nonparametric
linkage [NPL] score 3.9; ). Regions with nominal P values !.05 include chromosomes 2p11 (NPL scoreP ! .0002
2.0 [ ]), 3p24-p22 (NPL score 2.2 [ ]), 4q32-q33 (NPL score 2.5 [ ]), 12q24 (NPL score 2.1P ! .03 P ! .02 P ! .01
[ ]), 16p12-11 (NPL score 1.7 [ ]), and 17p12-p11 (NPL score 1.9 [ ]). When chromosomeP ! .03 P ! .05 P ! .03
12q24 was analyzed in only the 32 additional families, a nominal P value !.04 was observed. Together with data
from other published genomewide scans, these findings lend support to the hypothesis that regions on chromosome
9p13-q21 and 12q24 may harbor susceptibility genes for type 2 diabetes.

Type 2 diabetes mellitus (non–insulin-dependent dia-
betes mellitus [NIDDM]) is a multifactorial, heteroge-
neous disorder characterized by chronic hyperglycemia
resulting from pancreatic b-cell dysfunction and insulin
resistance. Manifestation of NIDDM is thought to re-
quire interaction between genetic and environmental fac-
tors, but the pathogenic mechanisms are not fully un-
derstood (Beck-Nielsen and Groop 1994; Groop and
Tuomi 1997). Both segregation analysis and twin studies
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indicate that there is a genetic component of NIDDM,
with an estimated recurrence risk of ∼3.5 (Rich 1990).
Several genes predisposing to monogenic forms of dia-
betes, including maturity-onset diabetes of the young
(MODY), have been identified in recent years (Froguel
et al. 1993; Yamagata et al. 1996a; Yamagata et al.
1996b; Horikawa et al. 1997; Stoffers et al. 1997).

Dissection of the complex—and, most likely, poly-
genic—late-onset NIDDM has been more difficult, al-
though some encouraging progress toward identification
of NIDDM or diabetes-related quantitative susceptibility
genes has been reported recently (Hanis et al. 1996;
Mahtani et al. 1996; Hanson et al. 1998; Imperatore et
al. 1998; Bektas et al. 1999; Duggirala et al. 1999; Elbein
et al. 1999; Altshuler et al. 2000; Ehm et al. 2000; Ghosh
et al. 2000; Mitchell et al. 2000; Vionnet et al. 2000;
Luo et al. 2001; Parker et al. 2001; Permutt et al. 2001).
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Table 1

Clinical Characteristics of the Individuals from the 58 Families Included in the Genomewide Scan

MEAN � SE

Serum Level

Age
(years)

Glucose
(mmol/liter)

Insulin
(mU/liter)

GROUP

NO. OF

INDIVIDUALS (M/F)
At Time
of Study At Onset

BMI
(kg/m2) fB 2hB fB 2hB

Nonaffected 211 (103/108) 52.8 � 1.2 … 26.9 � .3 5.8 � .05 6.6 � .1 9.8 � .4 53.1 � 3.2
Affected 229 (111/118) 64.3 � .8 57.5 � .8 28.8 � .3 9.6 � .2 15.0 � .5 15.9 � 1.1 76.2 � 4.6

Notable among these studies is the report of linkage
between NIDDM in Mexican American sib pairs and
the NIDDM1 (MIM 601283) locus on chromosome
2q37 (Hanis et al. 1996). This linkage was further
strengthened when interaction with a locus on chro-
mosome 15 was taken into account (Cox et al. 1999),
and a subsequent linkage-disequilibrium search in this
region identified association between NIDDM and var-
iation in or around the CAPN10 (MIM 605286) gene
(Horikawa et al. 2000).

Here we present results from a genomewide search for
genes conferring increased susceptibility to late-onset
NIDDM in 58 families, 26 of which have been described
elsewhere (Mahtani et al. 1996). In the present study,
we extend the family panel by including 223 individuals
(109 of whom were affected) from 32 additional families
(mean family size 7.0). To be included in the extended
panel, a family had to have at least two affected siblings
with an age at onset !70 years (which is less stringent
than the age at onset !60–65 years that had been re-
quired in the previous study). The subjects who were
unaffected at the time of the initial report were reinves-
tigated after 3 years, and five subjects were found to
have developed overt NIDDM. Therefore, in total, 440
subjects from 58 families (229 affected; mean family size
7.6) were included in the present study (table 1). All
nongenotyped individuals and individuals who were
unavailable for phenotyping were considered to have an
unknown affectation status. The families in this study
are from the Botnia region on the western coast of Fin-
land (Groop et al. 1996; Mahtani et al. 1996). The pop-
ulation history of the region is likely to restrict the num-
ber of distinct founder mutations and could therefore
aid in genetic studies of complex diseases (de la Chapelle
1993; de la Chapelle and Wright 1998; Wright et al.
1999; Peltonen et al. 2000).

All subjects have given their consent to be included in
the study, which has been approved by the local ethics
committee. Families with either type 1 diabetes or MODY
were excluded. Type 1 diabetes was considered present if
the patient (a) had either glutamic acid decarboxylase
antibodies or fasting c-peptide concentrations !0.3 nmol/

liter or (b) had required insulin treatment !3 mo after
diagnosis (Mahtani et al. 1996). Diabetes was diagnosed
on the basis of World Health Organization criteria (Al-
berti and Gries 1988): either (1) a previous diagnosis of
NIDDM, with treatment with oral agents and/or insulin,
or (2) either fasting blood (fB)-glucose 16.7 mmol/liter
(preferred) or a modified 2–h blood (2hB) glucose level
of 18.5 mmol/liter.

During a 3-year follow-up of our subjects with im-
paired glucose tolerance, 25% with a 2hB glucose 18.5
mmol/liter developed manifest NIDDM, compared with
3% of those with a 2hB glucose !8.5 mmol/liter (P !

). Furthermore, additional prospective studies also.0001
have shown that individuals with such 2hB-glucose lev-
els have a very high risk of developing diabetes (Saad et
al. 1988; Charles et al. 1991).

Genotypes were determined as described elsewhere
(Mahtani et al. 1996), and all data were subjected to an
extensive error-checking process. Data were checked for
Mendelian segregation, by PEDMANAGER software (by
M.P.R. and M.J.D.). The genotyping for the relevant locus
was repeated for the entire family in question when Men-
delian incompatibilities were found. We also checked the
identity by descent (IBD) match between the observed and
the expected values, in all possible sibships in the entire
set. There were no deviations from the expected values,
which indicates that, within our data set, there was a low
incidence of genotyping errors, sample mixups, or incor-
rectly defined kinship. The initial scan included 387 poly-
morphic microsatellite markers distributed throughout
the genome. In this study, we have added 65 markers in
regions of potential interest from the first round of anal-
ysis. The total scan thus includes 452 polymorphic mi-
crosatellite markers (fig. 1). The mean sex-averaged dis-
tance between these markers is ∼7 cM (range 0.1–14.1
cM), and the average information content in the ge-
nomewide scan is 0.7 (estimated from data).

Because the extent of genetic homogeneity and the
mode of inheritance of NIDDM are unknown, evidence
of linkage was assessed by a nonparametric method. We
have used the GENEHUNTER (Kruglyak et al. 1996)
version 2 software package (see the GENEHUNTER



Figure 1 Multipoint NPL analysis results for the NIDDM genomewide scan. Multipoint NPL scores were calculated by the GENEHUNTER version 2.0 software package (see the GENEHUNTER
software-distribution web site). In each graph, the left vertical axis indicates the NPL score, represented by a thick line, the horizontal axis indicates the length of each chromosome, and the tick
marks on the horizontal axis indicate the positions of the microsatellite markers; not all genotyped markers are represented. The shaded area indicates the recommended genomewide threshold (3.3
[Lander and Kruglyak 1995]) for suggestive linkage to a region.



512 Am. J. Hum. Genet. 70:509–516, 2002

Figure 2 Multipoint NPL score on chromosome 9, in the entire
family, represented as described in the legend to figure 1 but in greater
detail. The results for the initial 26 families are represented by a red
line (D9S166 [NPL score 4.61 { }]), the results for the addi-P ! .0001
tional 32 families are represented by a blue line (D9S166 [NPL score
1.09 { }]), and the combined results for all 58 families are rep-P p .14
resented by a black line (D9S166 [NPL score 3.9 { }]). TheP ! .0002
shaded area indicates the recommended genomewide threshold (3.3
[Lander and Kruglyak 1995]) for suggestive linkage to a region.

software-distribution web site), which performs com-
plete multipoint analysis of the statistical significance of
IBD allele sharing, at each location in the genome,
among all affected family members and which also es-
timates the information content (i.e., how much of the
total genetic information in a segment has been ex-
tracted). Allele frequencies used in the analysis were
those observed in the original 26 families with NIDDM
and in 20 unrelated normoglycemic control subjects (i.e.,
spouses without family history of diabetes) from the Bot-
nia region.

In our linkage analysis, the strongest linkage was be-
tween NIDDM and a region on chromosome 9q21. This
region had shown nominal significance ( ) in theP ! .05
initial study. In the present, expanded study, the evidence
is increased and shows suggestive evidence of linkage,
with a nonparametric linkage (NPL) score of 3.9 (P !

), at markers D9S166/D9S301. The region under.0002
the 1-LOD support interval (D9S1874–D9S153) on chro-
mosome 9p13-q21 spans ∼20 cM of the centromere (fig.
2). To determine the empirical genomewide significance
of our particular data sets, simulations were performed
by assignment of artificial genotype data to the families’
structures (by GENSIM; M.J.D., unpublished data).
These simulations matched our data sets, with regard to
marker heterozygosity, individual affection status, indi-
viduals genotyped, and proportion of missing data. Geno-
types for 100 replicates of the genomewide scan (2,200
chromosomes) were generated by a dense map of markers
covering the entire genome (with marker density uni-
formly matching that of our fine-mapped regions). In only
8 of the 100 simulated genomewide scans was the ob-
served NPL score of 3.9 exceeded ( ), indi-P ! .08corrected

cating that in !1/10 genomewide scans would one observe
such a peak by chance.

Overlapping results, with nominal statistical signifi-
cance, can be found in Pima Indians, Mexican Ameri-
cans, and Han Chinese (Hanis et al. 1996; Imperatore
et al. 1998; Pratley et al. 1998; Luo et al. 2001). Hanis
et al. (1996) reported some evidence ( ) of link-P ! .01
age between NIDDM and marker D9S175—4 cM from
D9S166, the marker that showed the strongest linkage
in our study—on chromosome 9q in their sample of 440
Mexican American sib pairs. Furthermore, Imperatore
et al. (1998) obtained modest two-point LOD scores
(1.28 and 1.48) for linkage between a region on chro-
mosome 9q and NIDDM associated with retinopathy
and nephropathy. Pratley et al. (1998) also reported
modest evidence of linkage (LOD score 1.46), between
chromosome 9q and a quantitative phenotype of 2-h
insulin concentration during an oral glucose-tolerance
test (OGTT), in 363 nondiabetic Pima Indians. All of
these studies have 1-LOD–support intervals that overlap
with those in the present study. Recently, Luo et al.
(2001) have reported suggestive linkage to chromosome

9p13-q21 (NPL score 2.9 [ ]) in 282 patientsP ! .0005
with NIDDM who are from 102 families of Han Chinese
origin, a result that directly overlaps with our finding.
However, several other studies found no evidence of link-
age to this region (Norman et al. 1997; Elbein et al.
1999; Ghosh et al. 2000), emphasizing the difficulty in
evaluation of linkage results.

In addition to the suggestive linkage to chromosome
9q21, six regions in our analysis displayed nominal P !

, including chromosomes 2p11 (NPL score 2.0 [.05 P !

]), 3p24-p22 (NPL score 2.2 [ ]), 4q32-q33.03 P ! .02
(NPL score 2.5 [ ]), 12q24 (NPL score 2.1 [P ! .01 P !

]), 16p12-11 (NPL score 1.7 [ ]), and 17p12-.03 P ! .05
p11 (NPL score 1.9 [ ]) (table 2).P ! .03

In the analysis of chromosome 12, which used diabe-
tes as the phenotype in the 32 additional families only,
the observed NPL score was 1.8 ( ) for markerP ! .04
D12S366 on chromosome 12q24 (fig. 3). Together with
our previous evidence for linkage to this region (Mahtani
et al. 1996), this strengthens the case for the presence of
a susceptibility gene/factor in this region.

We then investigated whether our initial report of link-
age with chromosome 12q24 in families with NIDDM
and with impaired insulin secretion could be replicated
in the 32 additional families. These families were divided
into quartiles of family means of log-transformed insulin
levels 30 min after OGTT (30-min OGTT) in the af-
fected individuals, after exclusion of outliers (see the
Human Genetics Group web site) (Mahtani et al. 1996).
Five families were excluded because of insufficient
data—that is, fewer than one-third of the affected sub-
jects had detectable levels of insulin 30-min OGTT.
Therefore, 27 families were ranked according to the fam-
ily means and were divided into quartiles. For the strat-
ified analysis, we used the seven families from the lowest
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Figure 3 Multipoint NPL score on chromosome 12 in two
NIDDM genomewide scans, represented as described in the legend to
figure 1. The results for the initial 26 families are represented by a red
line (D12S304 [NPL score 1.2 { }]), the results for the additionalP ! .2
32 families are represented by a blue line (D12S366 [NPL score 1.8
{ }]), the combined results for all 58 families are represented byP ! .04
a black line (D12S304–D12S1614 [NPL score 2.1 { }]), and theP ! .03
results of the new analysis of the 338 families described by Parker et
al. (2001) are represented by a green line (D12S378 [NPL score 1.8
{ }]).P ! .03

Table 2

Regions Displaying Nominal P Values !.05, in the Analysis of the 58 Families Included in the
Genomewide Scan

Chromosome Markers Included Best Marker(s) NPL Score (P)

2p11 D2S286–D2S1790 D2S1777 2.0 (!.03)
3p24-p22 D3S3038–D3S2409 D3S1561/D3S1768 2.2 (!.02)
4q32-q33 D4S1595–D4S3047 D4S3015/D4S2951 2.5 (!.01)
9q21 D9S1874–D9S153 D9S166/D9S301 3.9 (!.002)
12q24 D12S2070–D12S324 D12S304– D12S1614 2.1 (!03)
16p12-11 D16S420 D16S420 1.7 (!.05)
17p12-p11 D17S122–D17S953 D17S953 1.9 (!.03)

30-min-OGTT insulin quartile (average, 2.7 affected in-
dividuals). In the analysis of chromosome 12q24 in these
seven families, the observed NPL score was 0.7. We cal-
culated the empirical P value for this NPL score of 0.7
by resampling 7 families from the 27 families, 10,000
times. In 74% of these runs, we observed NPL scores
higher than the observed 0.7. These new data are not
entirely incompatible with those previously reported
(Mahtani et al. 1996), but they suggest that, if this region
contains a diabetes-susceptibility gene, it is not restricted
to an insulin-deficient phenotype.

In a separate study (Parker et al. 2001), our group
reported a LOD score of 1.85 on chromosome 12q24
in an affected-sib-pair analysis of a subgroup of 117 sib
pairs with high body-mass index (BMI) who were from
Sweden and Finland. To further investigate this locus,
we performed a nonparametric affected-pedigree-mem-
ber analysis of the 338 families from that study (Parker
et al. 2001), using the same NIDDM-affection criteria
that have been described above. The families from that
study (Parker et al. 2001) were, in general, smaller and
consisted mainly of sibships, compared with the ex-

tended families in the present study. The patients in that
other study resembled the patients from the current
study, in terms of BMI (mean � standard error [SE] p
29�0.2, compared to 28.8�0.3 in the present study),
although the age at onset was slightly lower (mean �
SE p 52.1�0.4, compared to 57.5�0.8 in the present
study) (Parker et al. 2001). Modest but overlapping ev-
idence for linkage to NIDDM was observed to the region
on chromosome 12q24, with an NPL score of 1.8 (fig.
3). Linkage at this locus is further supported by results
from a recent meta-analysis including our own data (as
described above) and two additional large European ge-
nomewide scans for NIDDM (Vionnet et al. 2000; Par-
ker et al. 2001; Wiltshire et al. 2001), yielding a nominal
P value of !.05, (F. Demenais and T. Kanninen, personal
communication).

A number of previously published linkage studies have
reported suggestive or tentative linkage between chro-
mosome 12q and NIDDM (Bowden et al. 1997; Shaw
et al. 1998; Ehm et al. 2000). In a large study involving
four different populations, Ehm et al. have recently re-
ported modest linkage (LOD score 1.4) to this region,
on 12q24, in both a sample of white American subjects
and a sample of African American subjects. Further-
more, this region was the only region, in their study, that
showed overlapping linkage in two of the ethnic groups,
with a linkage of (Ehm et al. 2000). Bowden etP � .01
al. reported a maximum multipoint LOD score of 1.45
for this region, in a sample consisting of white sib pairs
with NIDDM and nephropathy (Bowden et al. 1997).
Linkage to the NIDDM2 (MIM 601407) region, on
chromosome 12q24, has also been reported, in an ex-
tended pedigree with late-onset NIDDM (LOD score
3.65 at recombination fraction .0008, telomeric to
marker D12S321) (Shaw et al. 1998). Other studies,
however, have been unable to replicate this finding (Dug-
girala et al. 1999; Elbein et al. 1999; Ghosh et al. 2000).
Therefore, several published genomewide scans support
the hypothesis that chromosome 12q24 might harbor a
gene increasing susceptibility to NIDDM. In addition,
some modest support for linkage to NIDDM has been
found for a few other loci, on chromosomes 3p, 4q, and
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17q, which also have been implicated in other genome-
wide scans.

The chromosome 3p21.2-p14.2 region where we find
modest evidence of linkage has been linked to NIDDM
or related traits, in several other genomewide scans (Hanis
et al. 1996; Pratley et al. 1998; Duggirala et al. 1999;
Ehm et al. 2000; Mitchell et al. 2000), and is an interesting
candidate region for follow-up studies. We also found
some modest evidence for linkage between NIDDM and
chromosome 4q32-q33. Mitchell et al. (1995) also found
evidence for linkage between a nearby locus on chro-
mosome 4q28-31 and 2hB insulin during an OGTT in
382 Mexican American nondiabetic individuals. Duggir-
ala et al. (1999) also found suggestive evidence for linkage
between NIDDM and a close by region on chromosome
4q. The region on chromosome 17p12-q12 recently has
been reported to be linked to plasma leptin levels, as part
of a genomewide screen of 507 white nuclear families
(Kissebah et al. 2000). Linkage of chromosome 17 to total
cholesterol and HDL-cholesterol (HDL-C) has also been
found in a genomewide scan of 232 multigenerational
pedigrees randomly selected from the population (Klos et
al. 2001). Furthermore, modest evidence of linkage to this
region has recently been described in two large genome-
wide scans for NIDDM in white families (Vionnet et al.
2000; Wiltshire et al. 2001).

The collection of published genomewide scans of
NIDDM also underscores the difficulty in the interpre-
tation and replication of linkage findings. An unrealistic
number of sib pairs might be needed in order for weak
effects to be detected. A Pro12Ala variant in the PPARg

gene (MIM 601487) provides an example of such a sit-
uation; the variant was significantly associated with
NIDDM, in a meta-analysis using a transmission/dise-
quilibrium test (Altshuler et al. 2000). Despite a modest
individual risk reduction, of ∼15%, associated with the
rare Ala allele, the population-attributable risk was
large, 20%–25%. By simulation, we estimated that 3
million sib pairs would have been needed in order to
detect this effect in a linkage study. Furthermore, in a
recent study, simulations have shown that one would
not always expect a locus to be replicated over inde-
pendent studies, even if it were present (Hirschhorn et
al. 2001). Potential solutions must involve (a) the use of
very large data sets, such as those studied by the ongoing
International Type 2 Diabetes Linkage Analysis Con-
sortium; (b) association studies designed to detect mod-
est effects of common polymorphisms (Altshuler et al.
2000); and (c) the use of isolated populations (Peltonen
et al. 2000).

In conclusion, this extension of our previously re-
ported genomewide scan provides some support for link-
age between NIDDM and regions on chromosome 9p13-
q21 and 12q24. Further analysis of these regions will
likely require comprehensive association or linkage-dis-

equilibrium analysis. Fortunately, such extensive anal-
yses are becoming increasingly possible with the avail-
ability of dense genetic maps (Sachidanandam et al.
2001).
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